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We shall consider in the following linear problems of free vibrations and 
stability of thin elastic shells. l’he ultimate aim is an investigation 
concerning asymptotic behavior of eigenvalues depending on the density 
and configuration of the nodal lines of the eigenfunctions. 

1. It has been shown [ 1 I that in many cases an approximate determina- 
tion of the states of stress and strain of a thin elastic shell can be 
achieved by integration of the system of equations 

L (C) - aWN (2mW) + 2 = 0 

L (2mz.W) + N (C) = 0 
a2 = h2 

3R2(1 - 9) > (I.1 ) 

where C denotes a stress function in terms of which we can easily express 
the stress resultants of the shell; W is the normal deflection, while R 
is a certain characteristic curvature radius; Z is the normal component 
of the external surface loading; L and N are differential operators de- 
fined by 

N=AA, A=-&(&$$+-$--$) 

bations (1.1) are based upon the assumption that the middle surface 
of the shell is referred to the curvature lines and that the first guad- 
ratic form of the surface can be represented by the formula 

I = A2da2 + B2dfi2 

1077 
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R, and R, are the principal radii of curvature, and it is assumed that 
the coefficients appearing in L and N are bounded in the region consider- 
ed. 

Starting from (1.1) we can construct approximate expressions for the 
states of stress and strain of the shell in such cases when their vari- 
ability is sufficiently large. It will be shown in the following that 
this is sufficient for the present investigation. 

2. In problems on vibrations and static and dynamic stability we have 
to put 

2 = - 2&a$ (=hw) + (qo + Qf) M (2Ehw) (2.1) 

where m is the mass of the unit area of the shell, while 

We assume that: 

a) the shell is acted upon by some surface loading whose intensity is 
determined by the quantity q,, + ql, where go is a constant and qt 
is a variable (with respect to time) component of the loading; 

b) sufficiently small values of q,, + q1 produce in the shell a state 
of membrane stresses defined by the values of the tangential stress 
resultants 

T1° = ZEh (qo + qt) Tl, Tz” = 2Eh (qo + 41) T2 

SI’ = 2Eh (qo + qt) Sl, S2” = 2Eh (qo + qt) S2 

where T,, T,, S,, S, are given functions of a, 8. We omit here, as is 
often done, the tangential components of the inertia forces in problems 
of stability and those of the additional reduced loading in problems of 
dynamics. 

3. Let us apply Galerkin's method to the solution of the system (l.l), 
(2.1). To this end we substitute 

c = yc, 2EhW = 5w (3.1) 

where c, UI are given functions, while y, c are unknown numbers (in prob- 
lems of static stability) or unknown functions of t (in problems of 
vibrations and dynamic stability). Multiplying the first of Equations 
(1.1) by UJ and the second by c and integrating the equalities obtained, 
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we get equations for the determination of y and 5: 

r\\ L (c) wAB da df3 - a2R2c (1 N (w) wABdad$ - 

-- m ‘i\\w2ABdad$ + (qo + ql) 5 \\M (w)wABdad$ = 0 2Eh dt-2 
(3.2) 

y[\N (c)cABdadfJ + c\\L(w)cABdad@ = 0 

d Substituting qO + qt = 0 in (3.2) and replacing y, 4' by y cos ot 
and 5 cos ot, respectively, we find for the frequency of free vibrations 
of the shell the formula 

& 02 = Ic2p-4 ; 
i 1 + lce-2P-2~r~ s$J)laj (4.1) 

where k is, for the case of a thin shell, a large parameter: 

k = ($1' CT>01 (4.2) 

(r is an arbitrary positive number), while I, II and u' are numbers de- 
fined by the formulas 

k2P1 = \\ L (c) wABda dfl \\ L (w) cABda df3 

k% = \iN (w) wABdad$ \\N (c) cABda dfi 

k‘$’ = \\ N (c) CAB da dp fi w2AB da dfi 

(4.3) 

We use, on the left-hand sides of (4.3), various powers of the para- 
meter k as factors for the purpose of convenience in the subsequent pre- 
sentation; p is, for the time being, an arbitrary number. 

Analogously, substituting qt = 0 in (3.2) and assuming that y, 5 are 
independent of t, we find for the critical value qO in the problem of 
static stability the formula 

q. = k2p-x-4 1 v (1 -+ k8-‘P-?!f RZ 
3 (1 - 52) IZ, 

) (4.4) 

where, in addition to (4.3), we use the notation 

k4+xv = \\ N (c) CAB da dfi \\ M (w) wAB da dp (4.5) 

while x is, for the time being, an arbitrary number. 

We can derive without difficulty the differential equation of dynamic 
stability as well. Following Bolotin [2 1, we write it in the form 
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where o” and q,,” are the values of the numbers o and q,, determined by 
Formulas (4.1) and (4.4). In the following we confine ourselves to an 
analysis of Formulas (4.1) and (4.4), although the method of investiga- 
tion is applicable to a study of the properties of the equation of 
dynamic stability as well. 

5. Starting from Formulas (3.1), we write 

c = c* b- cos k (fl - fJ - r+ cos k (fl + f2)l 
w = w, [cos k (fl - fz) - cos k,(fl + f2)l 

(5.1) 

where c*, I , f 1, f2, r-, r+ are functions of a, p which are left to our 
choice, whi e k is the large parameter (4.2). Prescribing for W* and c* 3 
the conditions 

w, >a, c* > 0 (54 

we consider the properties of the states of stress and strain D, deter- 
mined by Formulas (3.1), (5.1). Taking (5.2) into account and noting 
that 

COS k(/l - 12) - COS k(f, + fz) = 2 sin k/, sin kj? 

we conclude that the nodal lines of D (lines along which w = 0) can be 
represented only by level lines of the functions fl and f2. ‘lhus, having 
chosen fl and fz in an appropriate manner, the result can be achieved 
that D will have two systems of nodal lines, each belonging to some 
family of curves prescribed in advance. These two families can be also 
reduced to one. To this end it is necessary, for example*, to assume 
fz = const f (n/n)k. ‘lbe density of the nodal lines of D will increase 
with increasing k, i.e. with increasing T at a given h/R. We shall call 

l The number of the families of nodal lines can be reduced to one in 
another way also, namely, starting from the assumption that the level 
lines of the functions fI and f2 coincide, i.e. that there is a mutual 
functional dependence between fl and f2. In the interest of definite- 
ness we shall use the method given in the text. This involves, in 
particular, exclusion of the possibility that the equalities 

fl f ,f2 = consl, II-- f2 = con:t 

may be fulfilled at all points of the region considered. 
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the number r, as in problems of static equilibrium of shells [l I, the 
index of variability. 

So we see that a proper choice of fl and f2 permits us to obtain a 
state of stress and strain (3.1), (5.1) having two (or one) systems of 
nodal lines belonging to two (or one) families of curves prescribed in 
advance; a proper choice of the index r of variability permits at fixed 
fl and fz, the density of the nodal lines to be intensified or reduced; 
finally, a suitable choice of c*, to* permits the boundary conditions of 
the problem (which are supposed to be homogeneous) to be satisfied, pro- 
vided that the conditions (5.2) remain valid and that the nodal lines 
are not changed. 

With the aid of (3.1), (5.1) we can obtain a net of nodal lines of 
any desired density without requiring that fl, fZ, c*, w* have a large 
variability. Therefore we assume that the functions fl, fp, we, c*, F-, 

F+ can be chosen in such a way that their variability does not become 
too large and that c and w approximate sufficiently, in the sense of 
proximity of the integrals (4.3), (4.5), some solution of bations (l.l), 
(2.1). At such a choice of fl, fS, w*, c*, F-, F+, Formulas (4.1) and 
(4.4) will yield values of o2 and qO sufficiently near to the exact 
values. 'Ike assumption introduced will be justified if the following two 
assumptions are justified: 

a) w can be approximated, in the way just indicated, by means of the 
second of the formulas (5.1) after a suitable choice of fl, f2, w*; 

b) Fe, F+ and c can be selected in such a way that at a chosen w the 
first of the formuifas (5.1) gives a sufficient approximation of c. 

'Ihe assumption (a) can be regarded as justified by the considerations 
presented in this section. The assumption (b) will be discussed below. 

6. 'lhe problem now consists in the derivation of asymptotic (for 
k + -) expressions for the integrals (4.3), (4.5) under the assumption 
that c and w are of the form (5.1). It is easy to ascertain the validity 
of the formula 

p (a) = - k2 [PO-F-U, cos k (fl - f2) - P”+F+U* cos k (fl + f,)] - 

- k [P,- (F-G) sink (fl - f2) - P: (~+a,) sin k (fl + f2)l + (6.1) 

+ [p2 (ra,) ~0s k (f~ - f2) - P, (‘-+a,) cos k (fi + f,)l 

where P is an operator of the second order,, which may represent L or M; 
a is a function of the form (5.1), which may represent c or w (if a is 
identified with w, then each of the quantities F- and F+ must be replaced 
by unity). ?he other notations in (6.1) are as follows: 
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(Ihe formula for M, is not written down, since it will not be needed); 

Pf = pj If=f,-+f* (6.3) 

The corresponding formula for the operator N is of the form 

N (a) = k4 [No-r-a, cos k (fl - f2) -No+r+u, cos k (fl + f,)l + . . . (6.4) 

where 

No = [&( g>” + $ (+gi” , JJj* = Nj Jf=f,ff* (6.5) 

while the points represent terms with factors of the form kS, where 
s < 4. 

7. Ihe following remarks concerning the formulas of Section 6 will be 
useful in the following. 

Ihe expressions Pj* and Nj* are linear differential operators with 
respect to the independent variables a, p; their order is indicated by 
their subscripts. In particular, 
zero; they are, 

PO* and NO* are operators of the order 
in other words, expressions free of symbols of deriva- 

tives; therefore, the quantities following PO* and N,,* in (6.1) and 
(6.4) are not enclosed in parentheses. 

'Ihe coefficients of P.* and N.* depend on the function f, which in 
turn equals either fl - If28 
Exceptions are P,’ and N,' 

or 3, + f 2, depending on the superscript. 
(a case in which the subscript equals the 

order of the original operator). The function f does not appear in P2* 
and N,*. Therefore the signs (plus) and (minus) are omitted at P, in 
(6.1), since these signs indicate what is meant by f. 

The first formula (6.5) shows that N, is a positive quantity for any 
arbitrary surface, no matter what the sign of its Gaussian curvature K 
may be (here and in the following we disregard the uninteresting case 
that fl and fz are constants). 

Let us consider the question concerning the sign of the expression L,, 
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defined by (6.2). 

If K > 0, then it can be assumed that R, and R, are positive, and ,!,, 
will be a positive quantity. 

If K = 0, then, to fix the ideas, we assume R, = m; this leads to 

In general R, can change its sign (e.g. in the case of a cylindrical 
shell, whose cross-section has a point of inflexion); such cases are, 
however, excluded from consideration here and everywhere in the follow- 
ing. Then we can assume that R, > 0, and then, in the case of K= 0, L, 
will be a non-negative quantity. ‘lhe first and the third of the formulas 
(6.2) show that the identity L, E 0 leads then to the identity L, z 0. 

If K < 0, then R, and R, will be of different sign in the first of 
Formulas (6.2), and it becomes impossible to make any definite statements 
regarding the sign of L,. 

8. We now turn to a discussion of the assumption (b) formulated at 
the end of Section 5. Suppose the preceding assumption (a) is correct and 
a proper choice of UI*, fl, f, in Formulas (5.1) and (3.1) leads to a 
sufficient approximation for 20. Then we can try to find the stress func- 
tion c with the aid of the second equation of the system (1.1) and com- 
pare the result with the one which can be obtained by a proper selection 
of c*, r-1 r+ in Formulas (5.1) and (3.1). Let us carry out, in an 
approximate manner, the computations involved, considering the parameter 
k to be arbitrarily large and keeping in all expressions only the terms 
with the highest powers of k (in such calculations we shall replace here 
and in the following the equality sign by the sign =). 

According to (3.1) and (6.4) we have 

N (C) =: Pyc, b-No- cos k (fl - fz) - r+N,,+ cos k (fl + f2) 1 G3.1) 

The quantities c*, r- and r+ can be considered to differ from zero. 
In addition, it has been shown in Section 7 that Iv,+ and N,- are positive. 
Therefore the coefficients of cos k(f, - fz) and cos k(fl + fz) on the 
right-hand side of (8.1) are definitely non-vanishing. 

For the principal part of L(2Eh W) we obtain, with the aid of (6.1): 

in the case that Lo- and L,,+ differ from zero: 

L (2EhW) z J?QO, [Lo- cos k (t - j2) - Lo+ ~0s k (/I + 12)1 (8.2) 
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in the case that L,,- = Lot = 0, while L,- and Lit differ from zero: 

L (2EhW) z - kc [Ll- (w*) sink (fl - f2) - Ll+ (w*) sin k (fl + f2)l (8.3) 

in the case that L,- = Lot = L,- = Lit = 0: 

L (2EhW) = 5 [L,Z (w,) cos k (f~ - 12) - 152 (w,) ~0s k (fl + f2)1 (8.4) 

It follows from the remarks made in Section 7 that (8.2) always 
applies to a shell of positive curvature, while (8.2) and (8.4) are 
possible for a shell of zero curvature; Formula (8.3) can be valid only 
for a shell of negative curvature, 

Replacing in the second of equations (1.1) N(C) by the approximate 
expression (8.1), and L(2EhW) by the approximate expression (8.2) or 
(8.41, we can satisfy the obtained equations, after having chosen c*, 

r-p '+ in that equality in such a manner as to make vanish the coeffi- 
cients of cos k(fl - fz) and of cos k(f, + fS) separately. 'Ibis shows 
that the assumption (b) can be considered valid in all cases except, 
perhaps, the case when the middle surface of the shell has negative 
curvature. 

Note. It is easily seen that if the curvature of the middle surface 
is positive, and also if the curvature of the middle surface equals zero 
but the functions fl and f2 are chosen in such a way that L,,+ and Lo- 
differ from zero, the quantities r- and r+ will have the same sign. 

9. Consider the relations 

(a, B) ~0s kf (a, P> da dS = k-lH (cp) 

ss ‘p (a, fl) sin kf (a, p) da db = k-III (cp) 
(j#const) (9.1) 

where H is a certain (varying from case to case) functional of 4 bounded 
as k+m. Of course, at 41 0 also H(+) = 0, but the latter equality may 
take place also at q5$ 0. 

We shall prove the relations (9.1) with the simplifying assumption 
that fa’ f 0 everywhere in the region. 'Ihen, using for the sake of de- 
finiteness the first of the relations (9.1), we may write 

ss T (a, fJ) ~0s kf (a, B> da dp = $s\ f”,!“(&,‘b, & sin kf (a, p) du d@ 
a 

Integration by parts gives 
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Both the area integral and the integral around the boundary line of 
the region are finite (if certain obvious conditions are fulfilled for 
the functions #J and f), and the proof is completed. 

From (9.1) we derive the formulas 

cp (a, 0) cos kf (a, fJ) cos kg (a, B) da 4 = (9.2) 

=- ; \\v 0% Iv [ cosk(f-g)+cosk(f+g)ldadp= 

\ cp (a, j3) da d/3 + 12-l H (9) when/ = g or f = -g = 
k-l H (cp) when j - g + const and f $ g # const 

ss cp (a, p) cos kf (a, p) sin kg (a, fi) dadp = k-‘H (cp) (9.3) 

when f - g# const, f + g # const 

Note. The cases f - g = const or f + g = const are of no interest, as 
implied in the footnotebf Section 5. 

10. Formulas (9.2) and (9.3) permit the principal parts (at k + =) of 
the integrals appearing in (4.3) and (4.5) to be easily computed. 

Taking into consideration the fact that N,,- and NO+ are positive at 
all points of the region, we obtain 

ss N (w) wAB da dp z q \\ [NO- + NO+] w,~AB da dfi 

ss 
N (c) CAB da @ z :J \\ [F-~No- + T+~No’I c,2ABdad$ (10.1) 

ss 
w2ABda@ z 

ss 
w,2ABdad/3 

Furthermore, we have the approximate equalities 

\\ L (c) wAB da dp z \\ L (w) CAB da d/3 z 

=: - $ \\ [Lo-r- + L,+r+l c,w,AB da dp 
c 

which are valid only under the condition that 

[Lo-r- + LO+;+] c,w,AB da dp # 0 

(10.2) 

(10.3) 
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If (10.3) is violated in consequence of the condition that at all 
points of the region under consideration the equalities 

Lo- = Lo+ = 0 (10.4). 

are fulfilled, then instead of (10.2) we will have 

ss L (c) zuABdud~ = Q1, 
ss 

L (w) CAB da dfJ = QZ (10.5) 

Here Ql, QZ are quantities which remain finite at k + 00. In particular, 
if in addition to (10.4) the equalities 

L,+ = L,- = 0 (10.6) 

are fulfilled, the relations (10.5) assume the form 

D u 
m L (c) wAB da dp z i \\ Lz (T-C* + r+c.+.) w,AB da dp 

c 

\\L (w) CAB da dfJ z $ \\L2 (w.J (r-c* + r+c*) AB da dfi 
(10.7) 

If, however, (10.3) is violated, while L,- and Lot are not identically 
equal to zero, then instead of (10.2) we will, in general, obtain formu- 
las of the form 

ss 
L (c) wABdadf3 z kE1, \\L (w) cABdadf3 = kEa (10.8) 

. 

where E, and E, are quantities which remain finite when k + Q). 

Comparing (lO.l), (10.2), (10.5) and (10.8) with Formulas (4.3), we 
can conclude that in (4.3) we may consider I, n and u' as representing 
quantities which remain finite at k + 00, provided that p is chosen cor- 
respondingly. Specifically, we must have p = 2 if the condition (10.3) 
is fulfilled, and p = 0 if Equations (10.4) are valid in the entire 
region considered. If the relations (10.3) and (10.4) are invalid simul- 
taneously, then, in general, we will have to put p = 1; cases, however, 
are possible when p = 0. 

In the same way we can verify that in (4.5) we have to put x= 2 if 

ss [MO- + Mo+l w2AB da dfl # 0 (10.9) 

and x= 0 if everywhere in the region considered 

MO- = M,,’ = 0 (10.10) 

and finally x= 1 or x= 0 if both (10.9) and (10.10) are invalid. 



Asymptotic properties of eigenvalues 1087 

U. Let us consider the conditions under which the relations (10.3) 
and (10.4) are fulfilled. 

If the curvature of the middle surface of the shell is positive, then 
Lo+, &)-, r-, r+ are positive quantities (see Sections 7 and 8). It has 
been assumed, further, that c*, w are non-negative and, of course, not 
identically equal to zero. Thus f ir a shell of positive curvature the 
relation (10.3) is always fulfilled. 

If the curvature of the middle surface equals zero, then LO-, Lot are 
non-negative quantities (Section 7). It has been shown, further, that 
the identity L, E 0 entails the identity L, 5 0 and, finally, that I-- 
and r+ have the same sign if Lot and LO- differ from zero. 'lhis leads to 
the conclusion that the relation (10.3) can become invalid in the case 
under consideration only if Equations (10.4) and (10.6) are fulfilled at 
every point. 'Ihe equalities (10.4), if expanded, can be written in the 
form 

() 
= , 

These equalities are fulfilled only in the case that 

a/1 af?? --f-E 
aa aa 

() 

Since the possibility of a mutual functional dependence between fl 
and fS is excluded, the relations (10.3) will have to be satisfied under 
the condition fl = fl(/3), fz = const (or fl = const, f2 = f,(P)). 

So we see that in the case of a shell of zero curvature the relations 
(10.3) are not fulfilled then and only then, when the state of stress and 
strain (3.1), (5.1) has only one system of nodal lines, consisting of the 
lines p = const, i.e. of asymptotic lines (rectilinear generators) of the 
middle surface. In this case we have to setp = 0. In all other cases the 
condition (10.3) is fulfilled and we have to set p = 2, as in the case 
of a shell of positive curvature. 

If the curvature of the middle surface of the shell is negative, no- 
thing definite can be stated about the sign of L, in general, and the 
question concerning the choice of values for p becomes more complicated. 
'lherefore, shells of negative curvature are excluded from consideration 
in the following. 'Ihis excludes also the consideration of the cases when 
p = 1, since such cases can occur neither for shells of positive curva- 
ture nor for shells of zero curvature (if, as assumed, the sign of R, 

does not change in the latter). 

12. We now return to Formula (4.1) in order to investigate with its 
aid the asymptotic behavior of the frequencies of free vibrations of the 
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shell, assuming that the index of variability r is positive so that the 
parameter k is arbitrarily large at a sufficiently small value of h/R. 
Keeping in (4.1) only the principal parts (as k + -1 we find 

m!!f- m2 z k?P--4 $ 
2Eh 

for r<ro 

g-hco2z k2E-4 $ (1 + &) ~1) for T = 'to 

m ($ z x”-21’ 
R2 n 

2Eh 3 (1 - 9) 7 
for ~;>a, 

where rO is a number defined by the formula 

1 
zO=cp 

(12.1) 

(12.2) 

which we shall call the characteristic value of the index of variability 
r. We note that rO is determined by p, which can assume only three values 
(2; 1; 0); correspondingly, there are only three characteristic values of 
the index of variability, namely l/2; l/3; l/4. These values of the index 
of variability play a particular role also in problems of static equi- 
librium in the theory of shells [3 I .,Taking (4.2) into account we may 
write 

We conclude from this result that, according to (12.1), o2 decreases 
with increasing r, or (for p = 2) 0' does not increase as long as T re- 
mains below its characteristic value r,,; when r exceeds the value r,,, a2 
starts increasing with increasing r. 

Now consider the case p = 2, which always occurs in a shell of positive 
curvature (Section 11); in a shell of zero curvature the case indicated 
occurs when the system of nodal lines includes at least one family of 
lines non-coinciding with the rectilinear generators. 

According to the first formula (12.1), the frequency of free vibra- 
tions will remain, in the cases enumerated above, commensurate with 
(h/RIO as long as T < rO = l/2, so that within certain limits the in- 
crease of r is not accompanied by essential increase of the frequencies 
of the free vibrations. Then at I > ra = l/2 the frequencies of the free 
vibrations essentially increase, according to the third formula (12.1), 
with the increase of r according to the law (H/R)'- 4r.The question as 
to at what value of the index of variability r the vibration frequency 
may become a minimum requires in the present case a more detailed study. 
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Now let p = 0. Ihis value will be assumed by p in the case that a 
shell of zero curvature undergoes vibrations with one family of nodal 
lines running along rectilinear generators. 

Formulas (12.1) and (12.3) show in this case that as long as r <r - 
l/4 the frequencies of free vibrations will be commensurate with (h/‘:)42, 
i.e. they will decrease with increasing index of variability r. At r > r0 
the frequencies of the free vibrations are commensurate with (h/R)‘- 47 
and they increase with increasing r. The characteristic value r0 = l/4 
is in correspondence with the minimum frequency. The latter is commensurate 
with (h/R)‘, being thus essentially lower (at arbitrarily small values of 
h/R) than the lowest frequency that can be obtained at vibrations of a 
shell of zero curvature in the case p = 2, i.e. in the case that there is 
at least one family of nodal lines not running along rectilinear gener- 
ators. 

It should be kept in mind that the increase of the index of variability 
indicates an increase in the number of nodal lines. Consequently, we have 
before us an inversion typical for problems of the theory of shells: de- 
crease of eigenvalues with increase in the number of nodal lines. 'Ihis 
takes place only until a certain limit - until the index of variability 
reaches its characteristic value, after which the usual course becomes 
restored: increase of the eigenvalues at increasing number of nodal lines. 

13. We now turn to an analysis of Formula (4.4). Keeping on its right- 
hand side the principal parts (for k + m) only, we obtain 

q. z k2P-x-4 ; for -c < ‘GO 

qo z lP---x--4 for t=‘Co 

- k4---X-Z/r 
R? n 

qo- 3 (1 - 0”) Y 
for-c > to 

where ru, the characteristic index of variability, has the same meaning 
as in Section 12. 'lbe parameter k is determined by (4.2). Hence 

k4-x-+ = -h_\2--(4--%)r I d 
where p and x can assume the values 0; 1; 2 only. ‘Ihis leads to the con- 
clusion that with r increasing k’p-x- 4 either decreases or (when p = 2, 
x= 0) maintains its values, while k4-x-2/7 always increases with in- 
creasing r. '&is in turn shows that (q,,),;, will be commensurate with the 
quantity 

(13.1) 
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Ihe corresponding value of qO will be reached at r = r,, (except in 
the case p = 2, x= 0, which it is not necessary to consider, as will be- 
come evident below). 

A question of interest is that concerning the minimum value of the 
critical force in problems of stability; it is therefore necessary to 
establish the conditions under which the exponent X in (13.1) reaches its 
maximum value; its values are given here in the numerical table for 
p = 2; 1; 0, and x = 2; 1; 0. 

Consider a shell of posi- 
tive curvature. We then have 
p = 2 independently of the 

x=2 x=1 x=0 

distribution of the nodal 
lines of the form of loss of 
stability. It is obvious that 
the configuration of these 

.: 

lines can always be chosen in 
such a way as to have the con- 
ditions (10.9), (10.10) either fulfilled, or violated, i.e. so as to 
have for x the required value. Consequently, the configuration of the 
nodal lines must be subjected to the requirement that for given I',, T2, 
S,, S, the condition (10.9) be fulfilled, which entails the equality 
x= 2, since then X assumes the maximum value possible at p = 2, namely 
the value 1. Hence, in particular, the conclusion that the case p = 2 and 
x = 0 is of no interest. 

Now let the curvature of the shell be zero. Then forms of loss of 
stability will exist at which p = 0. It will be a loss of stability with 
one family of nodal lines coinciding with the rectilinear generators. 
The numerical table shows, however, that for p = 0 the values of X are 
not smaller than 1 and that they become equal to 1 only for x= 0. At the 
same time, the equality p = 0 is realized only at a completely definite 
configuration of nodal lines on which it is impossible to impose addi- 
tional conditions, as in the case of a shell of positive curvature. 'lhere- 
for, two cases are possible for a shell of zero curvature: 

Case 1. At a given pre-critical state of stress (T,, T,, S,, S,) there 
are such fl, f2, corresponding to loss of stability with one family of 
nodal lines running along rectilinear generators, for which the condition 
(10.9) is fulfilled. 

Case 2. At a given pre-critical state of stress (T,, T,, S,, S2) with 
arbitrary fl, fz corresponding to loss of stability with one family of 
nodal lines running along rectilinear generators, the condition (10.9) 
is violated and the condition (10.10) is fulfilled. 
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In Case 1, loss of stability will take place with one family of nodal 
lines running along rectilinear generators; the critical value q,, will 
then be commensurate with (h/Rj3/*, while the index of variability will 
be equal to l/4. lh is follows from the fact that fl, f2 can be chosen in 
the case under consideration in such a way as to have p = 0 and x= 2, 
for which, according to the table of h-values, X assumes its maximum 
value equal to 3/2. Case 1 is exemplified by the problem of a cylindrical 
shell acted upon by external pressure. Ihe pre-critical state of stress 
will be as follows: 

Consequently 

TI = SI = S2 = 0, Tz < 0 

M” = T2&2(g)2 

In order to have the nodal lines coincide with the rectilinear gener- 
ators, the functions fl and f2 must be chosen, for example, as follows: 
fl = fl(@), f2 = const. lhen 

and the condition (10.9) is definitely fulfilled. 

In Case 2 we select the functions fl and f2 in such a way that the 
nodal lines run along the rectilinear generators, which leads to p = 0 
and x = 0. Ihis is in correspondence with X = 1 in our table of X-values. 
lhe same X-value is obtained for p = 2, i.e. for the case when the nodal 
lines have arbitrary configuration, except only that which violates the 
condition (10.9). ‘Ihis means that in Case 2 the coincidence of the nodal 
lines with the rectilinear generators does not lead to an essential de- 
crease of the critical load. An example for Case 2 is offered by a 
cylindrical shell under axial compression. In this case we have 

TI< 0, Ta = SI = Sz = 0 

from which 

Selecting fl and f2 in the same manner as in the preceding example, 
we find that the equality (10.10) is always fulfilled. 

14. Examining the table of h-values once more, one may notice the 
following possibility: by selecting, in the case of a shell of zero 
curvature, fl and f2 in such a way that the nodal lines of the form of 
loss of stability run along the rectilinear generators, we can reach in 
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some cases a dual effect. lhis will happen when simultaneously with the 
equations 

Lo+ = Lo- = 0 (14.1) 

the equations 

MO+ = Mo- = 0 (14.2) 

are also fulfilled. In this case we obtain, firstly, p = 0 instead of 
p = 2 by virtue of (14.1), which leads to an increase of A, and, second- 
ly, x= 0 instead of x= 2 by virtue of (14.2), which leads to a decrease 
of A. 

Loss of stability takes place at maximum A, and the question arises 
whether it is not necessary to choose fl, fS in such a way as to have 
the equalities (14.1) fulfilled not exactly, but with a certain degree 
of approximation. 

As an example we consider the case of a cylindrical shell twisted by 
shear forces, Ihe pre-critical state will be determined by 

TI = T2 = 0, s1 = - Sa = s = const # 0 

from which 

-I- 

Further, we have 

It is easily seen that by choosing fl = const and fl = fl(P), i.e. by 
identifying the nodal lines with the rectilinear generators, we obtain 
p = 0, x = 0, so that X will be equal to 1. On the other hand, by taking 

fa = const, fl = 11' (p) + k-'/l2 (a, 0) 

i.e. by securing small deviation of the nodal lines from the rectilinear 
generators, we obtain 

&.I,- = MO+ - I<-1 2 arz afl’ L- _ L + = IL-2 2 
AB aa ap 9 o- 0 

from which p = 0, x= 1, and the value of X increases from 1 to S/4. 

15. Th e present paper achieves an analysis of the asymptotic proper- 
ties of eigenvalues in problems of the theory of shells, deriving the 
laws which become valid starting from a certain sufficiently small value 
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of (h/R), of the parameter h/R and are the more pronounced the smaller 
this parameter. The order of smallness of (h/R), will vary from problem 
to problem. It depends on such parameters of the problem as, for example, 
the length of the shell, the ratio of the radii of curvature, the charac- 
teristics of the variability of the coefficients of Equations (1.1) from 
point to point, etc. The results presented above have then a sense of 
reality when the order of magnitude of (h/R),, remains within the limits 
encountered in practical conditions. This means that the parameters 
enumerated above must have values not too large and not too small. 

In a doctoral dissertation of 1950 (nOn the Equilibrium of Thin 
Elastic Shells at the Post-Critical Stage') by N.A. Alumiae the asymp- 
totic behavior of critical loads, with the influence of some of the 
aforementioned parameters taken into account, was investigated with the 
aid of some other methods. Whenever a comparison was possible, the results 
obtained by Alumiae coincide with those presented above. Also, the study 
presented here does not claim completeness, inasmuch as cases were ex- 
cluded from consideration when the coefficients of Equations (1.1) assume 
infinitely large values in the domain that is of interest to us, e.g. at 
the apex of a cone, along the circle which on a torus separates the zones 
of positive and negative curvatures from each other, etc. It should be 
noted, further, that we have excluded from consideration shells of nega- 
tive curvature as well as such shells of zero curvature on which the non- 
vanishing curvature changes its sign. The method of investigation is 
based upon the assumption that the parameter k is large. Therefore, the 
condition that the index of variability r be large will be essential. To 
extend the obtained results to the case r = 0 will be possible only by 
extrapolation. In this sense, the statement, for example, according to 
which (see Section 12) the frequency of free vibrations of shells of 
positive curvature remains commensurate with (h/R)‘, as long as r < rg = 
l/2 (with the value r = 0 included by extrapolation) is a conditional 
statement. 

In conclusion, we note that the domain of applicability of the original 
equations (1.1) is also determined by the requirement that the index of 
variability of the desired states of stress and strain be positive. Ihere- 
fore, it would not make any sense to replace (1.1) by exact equations, 
since then even the method of investigation,would become inapplicable. 
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